

Welcome

- 1. Logistics
- 2. Housekeeping and HSE
- 3. Program for OzFlux Workshop

Overview of OzFlux and TERN

Helen Cleugh and Eva van Gorsel TERN OzFlux Facility Leader and Deputy Leader

Context (1): Carbon, water and climate feedbacks in Australian ecosystems

- Terrestrial ecosystems:
 - Modulate climate via exchanges of energy, water, momentum and greenhouse gases (GHGs)
 - -Are the biggest users of water via evapotranspiration
- Some key research questions
 - -What is the net carbon uptake for Australian ecosystems and the continent, and how does this vary?
 - -What is the stability of the land-based carbon sinks and what does this mean for our future climate?
- Impact of climate change on terrestrial ecosystem functioning and services can be informed by ecosystem energy, water and carbon budgets

Context (2): Australian ecosystem data, information and understanding

 Information and knowledge needed for the sustainable management of ecosystems, and the services they provide, in the context of significant environmental change

Context (2): Australian ecosystem data, information and understanding

- How are ecosystems changing including the spatial distribution of plant and animal species over time?
- How do land management and climate drivers affect ecosystems and ecosystem processes?
 - Terrestrial carbon, water and nutrient cycles
 - GHG emissions
 - Biodiversity
 - Soil and water quality
- What is the impact of natural disturbance regimes and how are they changing?

TERN:

A Terrestrial Ecosystem Research Network

Goal

• Provide data, information, understanding and capabilities needed to answer these questions and overcome long-standing VISION:

The network and resources to enable sustained, long-term collection, storage and sharing of ecosystem data to meet terrestrial ecosystem and natural resource management research needs in Australia

 Enabling and fostering collaboration among ecosystem science communities

TERN: A Terrestrial Ecosystem Research Network

- Resources and Timing
 - 2009 2011: \$20m from DIISR's National Collaborative Research Infrastructure Strategy to create TERN-NCRIS
 - -2011 2014: \$25.63m from DIISR's Education Investment Fund for a second phase of TERN - TERN-EIF
- Structure
 - 6 data collection and 2 integration & synthesis (eMAST; ACEAS) Facilities
 - TERN Office (Univ. Queensland)
 - TERN Director
 - Coordination and Communication
 - TERN data portal

TERN: A Terrestrial Ecosystem Research Network

TERN: A Terrestrial Ecosystem Research Network

A network of flux stations delivering nationally consistent observations of energy, carbon and water fluxes

Purpose is to measure:

- CO_2 and water vapour fluxes using eddy covariance method –Water (λ E, ET) and CO_2 (NEE)
- Energy fluxes
 - -Radiation (Q) and heat (H, G)
- Above canopy, spatiallyaveraged fluxes
- Continuous: hourly to multiannual

Flux towers measuring vineyard and forest CO₂ and water fluxes

Purpose is to measure:

Drivers:

- Above-canopy meteorology
- Soil temperature and moisture

Data for analysis & interpretation:

• Within-canopy temperature, CO₂, humidity and wind profiles

A decade of continuous fluxes for a mixed Eucalypt forest in SE Australia - showing the importance of multi-annual time series of carbon and water fluxes

Flux stations and Ecosystem models

From M. Williams et al., www.biogeosciences.net/6/1341/2009/

OzFlux and Fluxnet: A broad range of ecosystems and climates

OzFlux Achievements

- OzFlux Facility and Central node established
 - Around 15 operational or soon-to-be operational (not all via TERN funding)
- TERN data portal and Information Infrastructure Group
- OzFlux data portal and Data Management System
 - Consistent data processing
 - Centralised data repository fluxes and metadata
- Developing a calibration system and procedure
- Funding for OzFlux workshops
- Web site: http://www.ozflux.org.au/index.html
 - We need you!
- eMAST and GHG website

Site Name	Ecosystem	Location
1. Robson	Simple notophyll vine forest	Qld (Atherton Tablelands)
2. Cape Tribulation	Complex mesophyll vine forest	Qld (Daintree)
3. Samford	Peri-urban	Qld (Brisbane)
4. Tumbarumba	Alpine ash forest (E. delegatensis)	SE NSW
5. Wallaby Creek	Mountain ash forest (E. regnans)	SE Vic
6. Wombat	Dry sclerophyll Eucalypt forest (E. obliqua; E. radiata and E. rubida)	Central Vic
7. Warra	E. obliqua forest	Tasmania
8. Nimmo High Plains	Poa C ₃ grassland	NSW alpine region
9. Chowilla	Mallee	SA (Lower Murray)
10. Gnangara	Coastal heath	Southern WA
11. Great Western Woodlands	Temperate woodland, heath and mallee	WA
12. Hamersley Station	Semi-arid C ₄ grassland	NW WA
13. Weeli Wolli Creek	Semi-arid, riparian coolabah woodland	NW WA
NT Savanna Flux Transect 14. Howard Springs 15. Daly and 16. Dry River	Wet tropical savanna to rangelands	NT – N/S transect
17. Alice Springs	Mulga – arid rangelands	NT
		CSIRO

OzFlux, TERN and the climate and ecosystem community

Partners

James Cook University Monash University University of Melbourne **Forestry Tasmania** University of Adelaide **Charles Darwin University** The University of Sydney University of Technology, Sydney **Queensland University of Technology** University of Queensland

ARC

Australian Climate Change Science Program (DCCEE) CSIRO **Bushfire CRC** TRaCK

http://www.ozflux.org.au/

OzFlux sites

Tumbarumba PIs: van Gorsel, Leuning (CSIRO)

- Carbon and water budgets in a mixed Eucalypt forest ecosystem
 - What is the role of climate and land management drivers?
- Scaling to regions via remote sensing
- Data for testing and improving land surface models
 - CABLE in ACCESS

OzFlux sites

Northern Tropical Savanna Flux Transect PIs: Beringer, Hutley (Charles Darwin and Monash Universities)

- Carbon and water balances
- Disturbance due to land clearing and fire
- Aerosols and trace gas emissions

OzFlux sites

Calperum – Chowilla

PIs: Meyer, Chittleborough (Univ. Adelaide)

- Cycles of carbon and water in a recovering mallee ecosystem
 - How do they respond to management?
 - What is the impact of a changing climate?
- Assess effectiveness of conservation management

Simple energy, water and carbon budgets in plant ecosystems

$$Q^* = \lambda E + H + \Delta Qs$$
$$P + I = ET + D + \Delta S$$
$$GPP = [R_H + R_A] + \Delta C$$
$$\Delta C = NEE$$

ENERGY

- Q^* = Net allwave radiation
- λE = Latent heat
- *H* = Sensible heat
- ΔQ_s = Heat storage

WATERP = PrecipitationI = IrrigationET = EvapotranspirationD = Runoff + Drainage $\Delta S = Soil moisture$

